Human-robot interaction is an interdisciplinary research area that aims at the development of social robots. Since social robots are expected to interact with humans and understand their behavior through gestures and body movements, cognitive psychology and robot technology must be integrated. In this paper we present a biological and real-time framework for detecting and tracking hands and heads. This framewor...
Building a general-purpose, real-time active vision system completely based on biological models is a great challenge. We apply a number of biologically plausible algorithms which address different aspects of vision, such as edge and keypoint detection, feature extraction,optical flow and disparity, shape detection, object recognition and scene modelling into a complete system. We present some of the experiment...
Best-performing object recognition algorithms employ a large number features extracted on a dense grid, so they are too slow for real-time and active vision. In this paper we present a fast cortical keypoint detector for extracting meaningful points from images. It is competitive with state-of-the-art detectors and particularly well-suited for tasks such as object recognition. We show that by using these points...
In recent years, a large number of impressive object categorisation algorithms have surfaced, both computational and biologically motivated. While results on standardised benchmarks are impressive, very few of the best-performing algorithms took run-time performance into account, rendering most of them useless for real-time active vision scenarios such as cognitive robots. In this paper, we combine cortical key...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |