Learning Non-Taxonomic Relationships is a subfield of Ontology learning that aims at automating the extraction of these relationships from text. This article proposes PARNT, a novel approach that supports ontology engineers in extracting these elements from corpora of plain English. PARNT is parametrized, extensible and uses original solutions that help to achieve better results when compared to other technique...
Manual construction of ontologies by domain experts and knowledge engineers is a costly task. Thus, automatic and/or semi-automatic approaches to their development are needed. Ontology Learning aims at identifying its constituent elements, such as non-taxonomic relationships, from textual information sources. This article presents a discussion of the problem of Learning Non-Taxonomic Relationships of Ontologies...
Learning Non-Taxonomic Relationships is a sub-field of Ontology Learning that aims at automating the extraction of these relationships from text. This article discusses the problem of Learning Non-Taxonomic Relationships of ontologies and proposes a generic process for approaching it. Some techniques representing the state of the art of this field are discussed along with their advantages and limitations. Final...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |