The decision on the most appropriate procedure to provide to the patients the best healthcare possible is a critical and complex task in Intensive Care Units (ICU). Clinical Decision Support Systems (CDSS) should deal with huge amounts of data and online monitoring, analyzing numerous parameters and providing outputs in a short real-time. Although the advances attained in this area of knowledge new challenges s...
For an Intelligent Decision Support System to work in real-time, it is of great value the use of intelligent agents that cooperate with each other to accomplish their tasks. In a critical environment like an Intensive Care Unit, doctors should have the right information, at the right time, to better assist their patients. In this paper we present an architecture for a Multi-Agents System that will support docto...
Manchester Triage System is a reliable system of triage in the emergency department of a hospital. This system when applied to a specific patients’ condition such the pregnancy has several limitations. To overcome those limitations an alternative triage IDSS was developed in the MJD. In this approach the knowledge was obtained directly from the doctors’ empirical and scientific experience to make the first vers...
This paper introduces a distributed data mining approach suited to grid computing environments based on a supervised learning classifier system. Specific Classifier and Majority Voting methods for Distributed Data Mining (DDM) are explored and compared with the Centralized Data Mining (CDM) approach. Experimental tests were conducted considering a real world data set from the intensive care medicine in order to...
Pervasiveness, real-time and online processing are important requirements included in the researchers’ agenda for the development of future generation of Intelligent Decision Support Systems (IDSS). In particular, knowledge discovery based IDSS operating in critical environments such of intensive care, should be adapted to those new requests. This paper introduces the way how INTCare, an IDSS deve...
Autonomous Digital Actors represent the next step in animating 3D characters. How to create such virtual actors remains an open question. This work presents and discusses an agent architecture derived from how real actors learn their art from acting schools. The knowledge base relies on a rule-based system where each rule encodes explicit knowledge into a classification vector which allows agents to suggest per...
This paper introduces a distributed data mining approach suited to grid computing environments based on a supervised learning classifier system. Different methods of merging data mining models generated at different distributed sites are explored. Centralized Data Mining (CDM) is a conventional method of data mining in distributed data. In CDM, data that is stored in distributed locations have to be collected a...
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM...
In the last years there has been a huge growth and consolidation of the Data Mining field. Some efforts are being done that seek the establishment of standards in the area. Included on these efforts there can be enumerated SEMMA and CRISP-DM. Both grow as industrial standards and define a set of sequential steps that pretends to guide the implementation of data mining applications. The question of the existence...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |