In this chapter, the health promoting effects of carbohydrate prebiotics are addressed. A brief description of their synthesis, thermo-physical properties, mechanisms of action, technological applications and current regulatory issues are presented.
Providing adequate vascularization is one of the main hurdles to the widespread clinical application of bone tissue engineering approaches. Due to their unique role in blood vessel formation, endothelial cells (EC) play a key role in the establishment of successful vascularization strategies. However, currently available polymeric materials do not generally support EC growth without coating with adhesive protei...
This work describes the development of a biodegradable matrix, based on chitosan and starch, with the ability to form a porous structure in situ due to the attack by specific enzymes present in the human body (a-amylase and lysozyme). Scaffolds with three different compositions were developed: chitosan (C100) and chitosan/starch (CS80-20, CS60-40). Compressive test results showed that these materials exhibit ve...
The establishment of a functional vasculature is as yet an unrealized milestone in bone reconstruction therapy. For this study, fibermesh scaffolds obtained from a blend of starch and poly(caprolactone) (SPCL), that have previously been shown to be an excellent material for the proliferation and differentiation of bone marrow cells and thereby represent great potential as constructs for bone regeneration, were ...
Blends of polysaccharides and proteins are a source for the development of novel materials with interesting and tailorable properties, with potential to be used in a range of biomedical applications. in this work a series of blended membranes composed by chitosan and soy protein isolate was prepared by solvent casting methodology. in addition, cross-linking was performed in situ with glutaraldehyde solutions in...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |