The xurography is a technique that has been used to make molds to produce microchannels. In contrast to soft lithography [1, 2], xurography uses equipments and materials commonly used in the printing industry, such as cutting plotters, vinyl and other materials. The main advantage of this technique is to fabricate microchannels at a reduced cost [3, 4]. The Fahraeus-Lindqvist effect is a well know phenomenon t...
Human blood is a multiphase biofluid primarily composed by the deformable red blood cells (RBCs) suspended in plasma. Because the complex structure of RBCs, blood exhibits unique flow characteristics on micro-scale level, due to their complex biochemical mechanisms and their response to both shear and extensional flow, which influence the rheological properties and flow behaviour of blood [1,2]. In the past yea...
Over the years, several experimental techniques were performed in in vitro environments, in an attempt to understand the flow behaviour of blood in microcirculation. Several of these studies were performed in glass capillaries, and have produced significant results with respect to rheological properties of blood [1, 2]. Another way to perform in vitro blood studies is to use microchannels fabricated by soft- li...
Red blood cells (RBCs) have a tendency to undergo axial migration due to the parabolic velocity profile which results in a high shear stress around wall that forces the RBC to move towards the center induced by the tank treading motion of the RBC membrane. As a result there is a formation of cell-free layer (CFL) with extremely low concentration of cells. Based on this phenomenon several works have proposed mic...
Escherichia coli O157:H7 is a foodborne pathogen associated to outbreaks with high mortality. Since the traditional methods for its detection are often time-consuming, there is a need to develop new techniques that allow a rapid, simple, reliable, specific and sensitive detection. The present study aimed to develop a biological protocol for DNA detection of Escherichia coli O157:H7 using a Quartz Crystal Microb...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |