Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities ar...
Publicado em: Materials Science Forum, vols. 730-732; Online available since 2012/Nov/12 ; In the present work, chitosan (CHI) and elastin-like recombinamers (ELRs) were used to conceive nanostructured thin films driven by sequential electrostatic layer-by-layer (LbL), a simple and versatile technique that discards the use of harmful reagents. Two similar ELRs were engineered to contain negatively charged amin...
In living organisms, there are phenomena that require the presence of specific biomolecules with distinct function and in variable concentra- tions at a given time, such as the healing and regeneration of tissue and organ lesions. In this work, we propose the use of a compartment- ed drug delivery device for the multiple release of bioactive agents. It consists of nanostructured microcapsules confined within a ...
The search for advanced materials, especially for those bioinspired, has recently been the focus of great research in many fields of application. Due to recent advances in materials characterization and fabrication technologies, and especially through the use of synthetic biology approaches, it is now possible to reengineer novel functionalities and structures of protein-based materials, taking advantage ...
Layer-by-layer (LbL) has been presented as a tool capable of constructing tunable and sustained release reservoirs for therapeutic and proliferation/differentiation agents. We report the conception of biocompatible stimuli-responsive microcapsules fabricated using LbL containing BSA as model protein. The capsules were constructed by the sequential adsorption of chitosan and a temperature-responsive elastin-like...
In living organisms, there are phenomena that require the presence of specific biomolecules with distinct function and in variable concentrations at a given time, such as the healing and regeneration of tissue and organ lesions. In this work, we propose the use of a compartmented drug delivery device for the multiple release of bioactive agents. It consists of nanostructured microcapsules confined within a mill...
An elastin-like recombinamer (ELR) containing the RGD cell adhesion domain was used to fabricate microparticles by an innovative and affordable process based on the use of superhydrophobic surfaces. Two microparticles types with different crosslinking extents were prepared. The biological response was tested using an osteoblast-like cell line (SaOs-2) performing proliferation and alkaline phosphatase (ALP) quan...
In this work, biomimetic smart thin coatings using chitosan and a recombinant elastin-like recombinamer (ELR) containing the cell attachment sequence arginine–glycine–(aspartic acid) (RGD) are fabricated through a layer-by-layer approach. The synthetic polymer is characterized for its molecular mass and composition using mass spectroscopy and peptide sequencing. The adsorption of each polymeric layer is followe...
Objectives: Polyelectrolyte vesicles using layer-by-layer (LbL) were recently intro-duced for the encapsulation of therapeutic molecules. This work presents multilay-ered microcapsules of chitosan and a temperature-responsive elastin-like recom-binamer (ELR) as a novel drug delivery system. The release of a pre-loaded model protein was studied at distinct temperatures and number of layers to evaluate the perm...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |