A (k,t)-regular set is a subset of the vertices of a graph, inducing a k -regular subgraph such that every vertex not in the subset has t neighbors in it. An exceptional graph is a connected graph with least eigenvalue greater than or equal to -2 which is not a generalized line graph, and it is shown that the set of regular exceptional graphs is partitioned in three layers. The idea of a recursive construction ...
An exceptional graph is a connected graph with least eigenvalue greater than or equal to -2 which is not a generalized line graph. It is shown that the set of regular exceptional graphs is partitioned in three layers. A (k,t)-regular set is a subset of the vertices of a graph, inducing a k-regular subgraph such that every vertex not in the subset has t neighbors in it. A new recursive construction of regular ex...
An exceptional graph is a connected graph with least eigenvalue greater than or equal to -2 which is not a generalized line graph. It is shown that the set of regular exceptional graphs is partitioned in three layers. A (k,t)-regular set is a subset of the vertices of a graph, inducing a k-regular subgraph such that every vertex not in the subset has t neighbors in it. A new recursive construction of regular ...
Resumo não disponível...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |