Previous mutational analysis of Jen1p, a Saccharomyces cerevisiae monocarboxylate/H+ symporter of the Major Facilitator Superfamily, has suggested that the consensus sequence 379NXX[S/T]HX[S/T]QD387 in transmembrane segment VII (TMS-VII) is part of the substrate translocation pathway. Here, we rationally design, analyse and show that several novel mutations in TMS-V and TMS-XI directly modify Jen1p function. Am...
Previous mutational analysis of Jen1p, a Saccharomyces cerevisiae monocarboxylate/H+ symporter of the Major Facilitator Superfamily, has suggested that the consensus sequence 379NXX[S/T]HX[S/T]QD387, located in transmembrane segment VII (TMS-VII), is part of the substrate translocation pathway. In this work, we rationally design and analyse novel mutations concerning residues in TMS-V and TMS-XI. Our analysis i...
The emergence of probiotics and prebiotics has revived the importance of short-chain fatty acids (SCFAs) associated to colonic and systemic health improvement. Although biosynthesis and degradation of SCFAs and other short-chain carboxylic acids, such as lactate, pyruvate or citrate are well understood, the transport of these acids is still a matter of discussion. The presence of SCFAs transporters in cellular ...
Lactic, acetic and propionic acids have been used for many years in industrial and pharmaceutical companies. In Saccharomyces cerevisiae, Jen1p is a major monocarboxylate:H+ symporter specific primarily for lactate, pyruvate and for acetate (TC # 2.A.1.12.2) (Casal et al., 1999). A phylogenetic tree of ScJen1p homologues (Casal et al., 2008) showed the existence of two main clusters: a Jen1 group (monocarboxyl...
Lactic, acetic and propionic acids have been used for many years in industrial and pharmaceutical companies and, more recently, lactate as been used for production of biodegradable polymers and as substitute for petroleum-derived chemicals. Understanding in detail the mechanisms underlying the transport of carboxylic acids is crucial towards an efficient biological production of these compounds. In Saccharomyce...
The knowledge of the mechanisms underlying the transport of carboxylic acids is crucial towards an efficient biological production of carboxylates which have been used for many years in industry namely for the production of biodegradable polymers and as substitute for petroleum-derived chemicals. In <i>Saccharomyces cerevisiae</i>, Jen1p is major monocarboxylate H+ symporter specific primarily for lactate, pyru...
| Financiadores do RCAAP | |||||||
|
|
|
|
|
|
||