Knowledge of the mutational parameters that affect the evolution of organisms is of key importance in understanding the evolution of several characteristics of many natural populations, including recombination and mutation rates. In this study, we estimated the rate and mean effect of spontaneous mutations that affect fitness in a mutator strain of Escherichia coli and review some of the estimation methods asso...
Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10(-5) per genome per generation, which is ...
We study the dynamics of adaptation in a spatially structured population. The model assumes local competition for replication, where each organism interacts only with its nearest neighbors and is inspired by experimental methods that can be used to study the process of adaptive evolution in microbes. In such experiments microbial populations are grown on petri dishes and allowed to adapt by serial passage. We c...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |