Biofouling and biocorrosion were studied in drinking water and heating water systems by forming biofilms on steel and on polymethylmetacrylate. In the drinking water system, biofilm development was more significant on corroded surfaces, suggesting that in these conditions they were largely protected from disinfection, probably because of sheltering and chlorine demand by corrosion products. In the urban heat su...
Aims: To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). Methods and Results: Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biof...
The build-up of biofilms on metals surfaces may lead to severe corrosion, especially in the presence of sulphate-reducing bacteria (SRB). To prevent the deterioration of material caused by biofilms it is necessary to understand the processes governing biofilm development including mechanisms of cell adhesion. Additionally, corrosion of metallic surfaces due to bacteria may lead to the dissolution of metallic el...
Aims: The understanding of the dynamics of surface microbial colonization with concomitant monitoring of biofilm formation requires the development of biofilm reactors that enable direct and real-time evaluation under different hydrodynamic conditions. Methods and Results: This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofil...
Sulphate reducing bacteria have an important role in the sulphur cycle, and therefore in wastewater treatment systems. They are able to form biofilms on metallic surfaces, leading to fouling and corrosion problems. Additionally, hydrogen sulphide that is a product of their metabolism can cause serious health risks. In this study, sulphate reducing bacteria (SRB) biofilms were developed on stainless steel 304 an...
Sulphate reducing bacteria have an important role in the sulphur cycle, and therefore in wastewater treatment systems. They are able to form biofilms on metallic surfaces, leading to fouling and corrosion problems. These bacteria are among the micro-organisms most frequently implicated in microbial corrosion of iron and ferrous alloys. Alloying elements added to steels for the improvement of their corrosion res...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |