This study used a rat subcutaneous implantation model to investigate gradual in situ pore formation in a self-regulating degradable chitosan-based material, which comprises lysozyme incorporated into biomimetic calcium phosphate (CaP) coatings at the surface to control the scaffold degradation and subsequent pore formation. Specifically, the in vivo degradation of the scaffolds, the in situ pore formation, and ...
The use of bioabsorbable polymeric scaffolds is being investigated for use in bone tissue engineering applications, as their properties can be tailored to allow them to degrade and integrate at optimal rates as bone remodelling is completed. The main goal of this review is to highlight the “intelligent” properties exhibited by chitosan scaffolds and their use in the bone tissue engineering field. To complement ...
Previous studies have shown that a-amylase and lipase are capable of enhancing the degradation of fiber meshes blends of starch and poly(e-caprolactone) (SPCL) under dynamic conditions, and consequently to promote the proliferation and osteogenic differentiation of bone marrow stromal cells (MSCs). This study investigated the effect of flow perfusion bioreactor culture in combination with enzymes on the osteoge...
This study focused on the degradation properties of gelatin microparticles incorporated in calcium phosphate (CaP) cement and the subsequent effect of these composites on bone formation. Positively charged alkaline gelatin (type A) microparticles or negatively charged acidic gelatin (type B) microparticles were incorporated in CaP cement, which was implanted in critical-sized cranial defect in rats and left in ...
The present work studies the influence of hydrolytic enzymes (a-amylase or lipase) on the degradation of fiber mesh scaffolds based on a blend of starch and poly(e-caprolactone) (SPCL) and the osteogenic differentiation of osteogenic medium–expanded rat bone marrow stromal cells (MSCs) and subsequent formation of extracellular matrix on these scaffolds under static culture conditions. The biodegradation profile...
This work proposes the use of nonporous, smart, and stimulus responsive chitosan-based scaffolds for bone tissue engineering applications. The overall vision is to use biodegradable scaffolds based on chitosan and starch that present properties that will be regulated by bone regeneration, with the capability of gradual in situ pore formation. Biomimetic calcium phosphate (CaP) coatings were used as a strategy t...
Uncorrected proof ; Tissue engineering has emerged as a new interdisciplinary field for the repair of various tissues, restoring their functions by using scaffolds, cells, and/or bioactive factors. A temporary scaffold acts as an extracellular matrix analog to culture cells and guide the development of new tissue. In this chapter, we discuss the preparation of naturally derived scaffolds of polysaccharide orig...
This study focused at the potential of transforming growth factor β1 (TGF-β1) loaded gelatin microparticles to enhance the bone response and mechanical strength of rabbit femoral defects filled with injectable calcium phosphate (CaP)/gelatin microparticle composites. Therefore, TGF-β1 loaded composites and non-loaded controls were injected in circular defects as created in the femoral condyles of rabbits and we...
Tissue engineering strategies aim at controlling the behavior of individual cells to stimulate tissue formation. This control is achieved by mimicking signals that manage natural tissue development or repair. Flow perfusion bioreactors that create culture environments with minimal diffusion constraints and provide cells with mechanical stimulation may closely resemble in vivo conditions for bone formation. Ther...
This study investigates the influence of the porosity of fiber mesh scaffolds obtained from a blend of starch and poly(!-caprolactone) on the proliferation and osteogenic differentiation of marrow stromal cells cultured under static and flow perfusion conditions. For this purpose, biodegradable scaffolds were fabricated by a fiber bonding method into mesh structures with two different porosities– 50 and 75%. Th...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |