Blood is a complex body fluid, composed of cells and plasma, which holds a massive amount of information about several physiological and pathologic events happening throughout the body. Hence, blood sampling and analysis are used extensively in traditional clinical laboratories for the diagnosis of several diseases. Since the inception of microfluidics, there has been a growing interest, by both microfluidic an...
We investigated the behaviour of red blood cells (RBCs) in a micro-channel with stenosis by using a confocal micro-PIV system. We could successfully measure individual trajectories of RBCs in a concentrated suspension up to 20% hematocrit (Hct). The results show that the trajectories of healthy RBCs become asymmetric before and after the stenosis, though trajectories of tracer particles in pure water are almost...
In this study, we use a confocal micro-PIV (Particle Image Velocimetry) system to investigate red blood cell motions flowing in micro-channels. This system enables us to visualize the individual RBCs even in the high Hct blood by exciting the labeled RBCs by the laser. We measure individual trajectories of RBCs in a micro-channel with stenosis or bifurcation under high Hct conditions. Our results clearly demons...
Blood flow in a microchannel with complex geometries has been investigated to develop biomedical microdevices (e.g. Faivre et al., 2006) or to understand pathology in small vessels, such as lacunar infarcts. In a small channel, say 100 μm in diameter, the blood is no longer assumed to be a homogeneous fluid because the size of the red blood cells (RBCs) cannot be neglected compared to the generated flow field (...
Blood in large arteries may be treated as a homogenous fluid from a macroscopic prospective. However, in reality blood is a suspension of deformable cells in viscous fluid plasma. In microcirculation, which comprises the smallest arteries and veins, the flow behavior of individual blood cells and their interactions provide the microrheological basis of flow properties of blood at a macroscopic level. Hence, in ...
In microcirculation the flow behavior of red blood cells (RBCs) plays a crucial role in many physiological and pathological phenomena. For instance, the interaction of RBCs in shear flow is believed to play an important role to the thrombogenesis process. Despite the relevance of this phenomenon on the blood mass transport, very little studies have been performed during the years, partly due to the absence of a...
Blood in microcircualtion is not a homogenous fluid but the suspension of Red Blood Cells(RBC). So individual RBCs behavior is essential to get good comprehension about the blood flow in microcirculation. In this study we observe the RBCs behavior through the stenosis by using confocal-micro- PTV system. And we can observe the difference of the cell free layer thickness according to Hct.
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |