This work proposes biodegradable textile-based structures for tissue engineering applications. We describe the use of two polymers, polybutylene succinate (PBS) proposed as a viable multifilamentand silk fibroin (SF), to produce fibre-based finely tuned porous architectures by weft knitting. PBS is here proposed as a viable extruded multifilament fibre to be processed by a textile-based technology. A comparativ...
A totalidade dos resumos foram publicados em "J. Tissue Eng. Regen. Med. 2012; 6 (Suppl. 2) : 8–39."
Human Adipose-derived Stem Cells (hASCs) became an emerging possibility for tissue replacement therapies, such as bone tissue regeneration. Due to their osteogenic differentiation potential, easy isolation, expansion and in vitro proliferation, they have become a highly potential source of seed cells to be seeded in bone tissue engineering (TE) constructs and have demonstrated promising prospects in bone regene...
Bone tissue engineering represents a specialised niche within the biomedical field to which textile technologies can markedly contribute. Textile-based technologies are considered as potential routes for the production of scaffolds for TE applications, as they present superior control over design and reproducibility. This work aims at developing novel 2D/3D textile structures based on different polymeric materi...
Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the deve...
The implantation of biomaterials may elicit a host response to this foreign body, and the magnitude of that reaction depends on the host and on the implanted material. The aim of this study was to compare the inflammatory response induced by the implantation of starch-based (SPCL) scaffolds in two implantation rat models: subcutaneous (SC) and intramuscular (IM). Moreover, two methodologies, wet spinning (WS) a...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |