Aiming to achieve higher performances, swimmers should maximize each component of swimming races. During starts and turns, the gliding phase represents a determinant part of these race components. Thus, the depth position allowing minimizing the hydrodynamic drag force represents an important concern in swimming research. The aim of this study was to analyse the effect of depth on drag during the underwater gli...
The aim of this study was to analyse the effect of depth on drag during the underwater gliding. CFD simulations were applied to the flow around a 3D model of a male adult swimmer in a prone gliding position with the arms extended at the front. The domain to perform the simulations was created with 3.0 m depth, 3.0 m width and 11.0 m length. The drag coefficient and the hydrodynamic drag force were computed, usi...
In the sports field, numerical simulation techniques have been shown to provide useful information about performance and to play an important role as a complementary tool to physical experiments. Indeed, this methodology has produced significant improvements in equipment design and technique prescription in different sports (Kellar et al., 1999; Pallis et al., 2000; Dabnichki & Avital, 2006). In swimming, this ...
The gliding phase following a swimming start or turn is an important component of the overall swimming performance. PURPOSE: To analyse the effect of depth on hydrodynamic drag force during the underwater gliding, using computational fluid dynamics. METHODS: A three-dimensional domain was created to simulate the fluid flow around a swimmer model, representing the geometry of part of a lane in a swimming pool. T...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |