In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of t...
The development of high-throughput and combinatorial technologies is helping to speed up research that is applicable in many areas of chemistry, engineering, and biology. A new model is proposed for flat devices for the high-throughput screening of accelerated evaluations of multiplexed processes and reactions taking place in aqueous-based environments. Superhydrophobic (SH) biomimetic surfaces based on the so-...
Aim: The development of novel silk/nano-sized calcium phosphate (silk/nano-CaP) scaffolds with highly dispersed CaP nanoparticles in the silk fibroin (SF) matrix for bone tissue engineering. Materials & methods: Nano-CaP was incorporated in a concentrated aqueous SF solution (16 wt.%) by using an in situ synthesis method. The silk/nano-CaP scaffolds were then prepared through a combination of salt-leaching/ lyo...
The coating of implantable nano- or micro-objects with polyethylene glycol (PEG) enhances its biocompatibility and biodistribution. Herein, we describe a new protocol that enhances and maintains MNPs stability in biological media, simulating multiple conditions to which they would be subjected in the human body. Magnetite nanoparticles (MNPs) prepared via a facile way at room temperature by co-precipitation rea...
In recent years, progress in the field of hybrid materials has been accelerated through use of the sol–gel process for creating materials and devices, which benefit from the incorporation of both inorganic and organic components. In this work, organic–inorganic hybrid membranes were prepared from tetraethoxysilane and a blend system composed of chitosan and soy protein. By introducing a small amount of siloxane...
In this study, we investigated the use of short sisal fibre with and without polyethylene-graft-maleic anhydride (PE-g-MA) as a strategy to reinforce cork–polymer composite (CPC) materials. The use of alkali treatment of sisal to improve fibre–matrix adhesion was evaluated. High density polyethylene (HDPE) was used as matrix and the composites were produced in a two-step process using twin-screw extruder follow...
In recent years, much attention has been given to different marine organisms, namely as potential sources of valuable materials with a vast range of properties and characteristics. In this work, β-chitin was isolated from the endoskeleton of the giant squid Dosidicus gigas and further deacetylated to produce chitosan. Then, the squid chitosan was processed into membranes and scaffolds using solvent casting and ...
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered...
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obtained from adipose tissue in the t...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |