Bioactive polymeric microspheres can be prepared by means of coating them with a calcium silicate solution and subsequently soaking in a simulated body fluid (SBF). Such combination should allow for the development of bioactive microspheres for several applications in the medical field including tissue engineering carriers. Four types of polymeric microspheres, with different sizes, were used in this work: (i) ...
Bioactive chitosan microparticles can be prepared successfully by treating them with a calcium silicate solution and then subsequently soaking them in simulated body fluid (SBF). Such a combination enables the development of bioactive microparticles that can be used for several applications in the medical field, including injectable biomaterial systems and tissue engineering carrier systems. Chitosan microparti...
The present research aims to develop a new route for surface functionalization of biodegradable polymers. The method is based on a wet chemistry modification, resulting in etching and/or hydrolysis in order to increase the amount of polar groups, such as hydroxyl (--OH) and carboxylic (--COOH) groups on the surface of the polymer. The polymer used as substrate was a corn starch-ethylene vinyl alcohol biodegrada...
Covalent coupling of sulfonic group (–SO3H) was attempted on different polymers to evaluate efficacy of this functional group in inducing nucleation of apatite in body environment, and thereupon to design a simple biomimetic process for preparing bonelike apatite-polymer composites. Substrates of polyethylene terephthalate (PET), polycaprolactam (Nylon 6), high molecular weight polyethylene (HMWPE) and ethylene...
A bioactive polyethylene substrate can be produced by incorporation of sulfonic functional groups (-SO3H) on its surface and by soaking in a calcium hydroxide saturated solution. Variation of the surface potential of the polyethylene modified with -SO3H groups with soaking in a simulated body fluid (SBF) was investigated using a laser electrophoresis zeta-potential analyzer. To complement the study using laser ...
Sulfonic groups (-SO3H) were covalently attached on different polymeric surfaces enabling them to induce apatite nucleation, for developing bioactive apatite-polymer composites with a bonelike 3-dimensional structure. High molecular weight polyethylene (HMWPE) and ethylene-co-vinyl alcohol co-polymer (EVOH) were used. The polymers were soaked in two types of sulphate-containing solutions with different concentr...
Proceedings of the 18th International Symposium on Ceramics in Medicine, The Annual Meeting of the International Society for Ceramics in Medicine (ISCM), Kyoto, Japan, 5-8 December 2005. Published in : Key Enggineering Materials, vol. 309 - 311 ; Bioactive polymeric microspheres can be produced by pre-coating them with a calcium silicate solution and the subsequent soaking in a simulated body fluid (SBF). Such...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |