Resistive Random Access Memories based on metal-oxide polymer diodes are characterized. The dynamic behavior is studied by recording current-voltage characteristics with varying voltage ramp speed. It is demonstrated that these organic memory devices have an internal capacitive double-layer structure, which inhibits the switching at high ramp rates (1000 V/s). This behavior is modeled and explained in terms of ...
Electroforming of an Al/Al2O3/polymer/Al esistive switching diode is reported. Electroforming is a dielectric soft-breakdown mechanism leading to hysteretic current–voltage characteristics and non–volatile memory behavior. Electron trapping occurs at early stages of electroforming. Trapping is physically located at the oxide/polymer interface. The detrapping kinetics is faster under reverse bias and for thicker...
Nanostructure silver oxide thin films diodes can exhibit resistive switching effects. After an electroforming process the device can be programmed between a low conductance (off-state) and high conductance (on- state) with a voltage pulse and they are already being considered for non-volatile memory applications. However, the origin of programmable resistivity changes in a network of nanostructure silver oxide ...
CONTEXTUALIZAÇÃO: A aplicabilidade da análise de marcha foi aprimorada com a introdução da análise de componentes principais (ACP), uma técnica estatística que reduz o volume de dados, permitindo a comparação de todo o ciclo entre grupos de indivíduos. OBJETIVOS: Comparar, por meio da ACP, a cinemática da articulação do joelho durante a marcha nos planos sagital e frontal, entre mulheres idosas sem e com diagnó...
Resistive switching properties of silver nanoparticles hosted in an insulating polymer matrix (poly(N-vinyl-2-pyrrolidone) are reported. Planar devices structures using interdigitated gold electrodes were fabricated. These devices have on/off resistance ratio as high as 103 , retention times reaching to months and good endurance cycles. Temperature-dependent measurements show that the charge transport is weakly...
Metal-insulator-polymer diodes where the insulator is a thin oxide (Al2O3) layer are electroformed by applying a high bias. The initial stage is reversible and involves trapping of electrons near the oxide/polymer interface. The rate of charge trapping is limited by electron transport through the polymer. Detrapping of charge stored can be accomplished by illuminating with light under short-circuit conditions. ...
We present confocal Raman spectroscopy (CSRS) maps of Poly(9,9-dioctylfluorene) (PFO)-based organic light emitting diode under operation. The CSRS analysis of the OLEDs was performed in normal room conditions. The non-emissive spots presented higher Raman intensity and broadening of the vibrational bands in comparison with the luminescent ones. The phenomenon is associated with an increase in the PFO - * absor...
Este trabalho é um exercício de união entre os campos da Ciência da Informação e da Ciência da Comunicação. Uma bem fundamentada e robusta metodologia de análise bibliométrica é utlizada para analisar os Meios de Comunicação de Massa, gerar tendências e determinar as preferências dos diversos ve&iacut...
Metal oxide-polymer diodes require electroforming before they act as nonvolatile resistive switching memory diodes. Here we investigate the early stages of the electroforming process in Al/Al2O3 /polyspirofluorene /Ba/Al diodes using quasistatic capacitance-voltage measurements. In the initial stage, electrons are injected into the polymer and then deeply trapped near the polyspirofluorene-Al2O3 interface. For ...
Organic molecules with semiconducting properties are becoming nowadays core of the organic-based electronic era. Although organic light emitting diodes (OLEDs) have already matured for commercial applications, they still require longer device lifetimes. Some of the long-standing challenges in OLED technology relay on degradation and failure mechanisms. Several authors observed that degradation and subsequent da...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |