Metabolic models are an important tool for in silico simulation of cells’ behavior. Until now, a considerable number of metabolic models were released for several microorganisms. Ashbya gossypii is an industrially relevant fungus intensively used for riboflavin production with no model reported until now. Despite the high similarity with the Saccharomyces cerevisiae genome, A. gossypii contains only 4726 protei...
A very high gravity (VHG) repeatedbatch fermentation system using an industrial strain of Saccharomyces cerevisiae PE-2 (isolated from sugarcane-to-ethanol distillery in Brazil) and mimicking industrially relevant conditions (high inoculation rates and low O2 availability) was successfully operated during fifteen consecutive fermentation cycles, attaining ethanol at 17.1 ± 0.2% (v/v) with a batch productivity o...
Systems biology has recently arisen as a promising and powerful tool for process development and optimization. Metabolic models are one of its different methodologies with high interest and applicability since it allows the simulation of cells behavior under different environments and/or specific genetic variations. The fast-growing number of sequenced genomes may have contributed to this phenomenon, as the seq...
The flocculation gene FLO1 was transferred into the robust industrial strain Saccharomyces cerevisiae PE-2 by the lithium acetate method. The recombinant strain showed a fermentation performance similar to that of the parental strain. In 10 repeat-batch cultivations in VHG medium with 345 g glucose/L and cell recycling by flocculation–sedimentation, an average final ethanol concentration of 142 g/L and an ethan...
Metabolic models are an important tool for in silico simulation of cells’ behavior. Until now, a considerable number of metabolic models have been released for a wide range of microorganisms. Ashbya gossypii is an industrial-relevant fungus intensively used for riboflavin production with no model reported until now. Despite its high similarity with Saccharomyces cerevisiae genome, A. gossypii contains only 472...
Most of the current processes for bioethanol production are based on the use of Very-High-Gravity (VHG) technology and the processing of lignocellulosic biomass, limited by the high osmotic pressure and ethanol concentration in the fermentation medium, and by inhibitors resulting from biomass pre-treatments, respectively. Aiming the optimization of strains for industrial bioethanol production an integrated appr...
Background: The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the ...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |