In Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms...
Biomedical Text Mining (BioTM) is providing valuable approaches to the automated curation of scientific literature. However, most efforts have addressed the benchmarking of new algorithms rather than user operational needs. Bridging the gap between BioTM researchers and biologists’ needs is crucial to solve real-world problems and promote further research. We present @Note, a platform for BioTM that aims at th...
Over the last few years, a growing number of techniques has been successfully proposed to tackle diverse challenges in the Biomedical Text Mining (BioTM) arena. However, the set of available software tools to researchers has not grown in a similar way. This work makes a contribution to close this gap, proposing a framework to ease the development of user-friendly and interoperable applications in this field, ba...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |