We introduce and report recent developments on a novel five port optoelectronic voltage controlled oscillato r consisting of a resonant tunneling diode (RTD) optical-waveguide integrated with a laser diode. The RTD-based optoelectronic oscillator (OEO) has both optical and electrical input and output ports, with the fifth port allowing volta ge control. The RTD-OEO locks to ref- erence radio-frequency (RF) sour...
We introduce and report recent developments on a novel five port optoelectronic voltage controlled oscillator consisting of a resonant tunneling diode (RTD) optical-waveguide integrated with a laser diode. The RTD-based optoelectronic oscillator (OEO) has both optical and electrical input and output ports, with the fifth port allowing voltage control. The RTD-OEO locks to reference radio-frequency (RF) sources ...
A hybrid optoelectronic integrated circuit comprising a laser diode driven by a resonant tunnelling diode can output various optical and electrical signal patterns that include self-sustained oscillations, subharmonic and harmonic locking and unlocked signals, with potential applications in optical communication systems.
Shot noise suppression in double barrier resonant tunnelling diodes with a Fano factor well below the value of 0.5 is theoretically predicted. This giant suppression is found to be a signature of the coherent transport regime and can occur near zero temperature as a consequence of the Pauli principle or above about 77 K as a consequence of long range Coulomb interaction. These predictions are validated by exper...
We present a method to include the effects of light excitation on two different models of resonant-tunneling-diode-based devices. Our approach takes into account both photoconductive and charge accumulation effects responsible for shifting the static I –V curve when the structure is under light excitation. Computational simulations led to good agreement between the model and experimental results
Shot noise suppression below 1/2 of the full Poisson value in double barrier resonant diodes is confirmed to be a signature of coherent rather than sequential tunnelling transport. We reply to the arguments of the previous comment which dispute the above claim. We anticipate the development of a rigorous theory that improves previous approaches without contradicting the essential findings we recently reported (...
We implement a quantum approach which includes long range Coulomb interaction and investigate current voltage characteristics and shot noise in double-barrier resonant diodes. The theory applies to the region of low applied voltages up to the region of the current peak and considers the wide temperature range from zero to room temperature. The shape of the current voltage characteristic is well reproduced and w...
Shot noise suppression in double barrier resonant tunnelling diodes with a Fano factor well below the value of 0.5 is theoretically predicted. This giant suppression is found to be a signature of coherent transport regime and can occur at zero temperature as a consequence of the Pauli principle or at sufficiently high temperatures above 77 K as a consequence of a long-range Coulomb interaction. These prediction...
Noise in resonance tunnel diodes based on InGaAlAs structures is studied at two frequencies. A shot noise caused by the current flowing through two barriers of the heterostructure is identified. It was found that if the voltage across the structure is within the first ascending section of the current–voltage characteristics, the shot noise is suppressed with the suppression ratio G ~ 1/15. In the second ascen...
The impedance of InGaAlAs resonance-tunnel heterostructures used for modulation of optical radiation is experimentally studied in the frequency range from 45 to 18 MHz. The dependence of their equivalent circuit on the bias voltage is determined. The spectrum of the harmonics of the current in the resistive frequency multiplication in such structures is calculated. The results confirm that these structures are ...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |