Tese de doutoramento em Biological and Chemical Engineering ; This work aimed at the development and optimization of systems and techniques for microalgae cultivation, in order to make the process economically and environmentally sustainable. Three different strategies were adopted: i) maximize productivity through the optimization of culture conditions, ii) maximize productivity and decrease costs by the use ...
Abstract Biofixation of \CO2\ by microalgae has been recognized as an attractive approach to \CO2\ mitigation. The main objective of this work was to maximize the rate of \CO2\ fixation ( R \CO\ 2 ) by the green microalga Chlorella vulgaris \P12\ cultivated photoautotrophically in bubble column photobioreactors under different \CO2\ concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to...
The concept of a biorefinery that integrates processes and technologies for biomass conversion demands efficient utilization of all components. Hydrothermal processing is a potential clean technology to convert raw materials such as lignocellulosic materials and aquatic biomass into bioenergy and high added-value chemicals. In this technology, water at high temperatures and pressures is applied for hydrolysis, ...
Photosynthetic carbon partitioning into starch and neutral lipids, as well as the influence of nutrient depletion and replenishment on growth, pigments and storage compounds, were studied in the microalga, Parachlorella kessleri. Starch was utilized as a primary carbon and energy storage compound, but nutrient depletion drove the microalgae to channel fixed carbon into lipids as secondary storage compounds. Nut...
Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic c...
Different methods for estimating starch in Chlorella vulgaris were compared with the view of establishing a procedure suitable for rapid and accurate determination of starch content in this microalgal species. A close agreement was observed between methods that use perchloric acid and enzymatic methods that use α-amylase and amyloglucosidase to hydrolyze the starch of microalgae grown under different nitrogen c...
Increasing microalgal starch content by nutrient limitation has been regarded as an affordable approach for the production of third generation bioethanol. This work evaluated starch accumulation in Chlorella vulgaris P12 under different initial concentrations of nitrogen (0–2.2 g urea L−1) and iron (0–0.08 g FeNa-EDTA L−1) sources, using a central composite design (CCD) for two factors. The obtained model: Star...
The slow development of microalgal biotechnology is due to the failure in the design of large-scale photobioreactors (PBRs) where light energy is efficiently utilized. In this work, both the quality and the amount of light reaching a given point of the PBR were determined and correlated with cell density, light path length, and PBR geometry. This was made for two different geometries of the downcomer of an airl...
Biofuel production from renewable sources is widely considered to be one of the most sustainable alternatives to petroleum sourced fuels and a viable means for environmental and economic sustainability. Microalgae are currently being promoted as an ideal third generation biofuel feedstock because of their rapid growth rate, CO2 fixation ability and high production capacity of lipids; they also do not compete wi...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |