CLASPs are widely conserved microtubule plus-end–tracking proteins with essential roles in the local regulation of microtubule dynamics. In yeast, Drosophila, and Xenopus, a single CLASP orthologue is present, which is required for mitotic spindle assembly by regulating microtubule dynamics at the kinetochore. In mammals, however, only CLASP1 has been directly implicated in cell division, despite the existence ...
The kinetochore is a control module that both powers and regulates chromosome segregation in mitosis and meiosis. The kinetochore-microtubule interface is remarkably fluid, with the microtubules growing and shrinking at their point of attachment to the kinetochore. Furthermore, the kinetochore itself is highly dynamic, its makeup changing as cells enter mitosis and as it encounters microtubules. Active kinetoch...
Maintenance of genetic stability during cell division requires binding of chromosomes to the mitotic spindle, a process that involves attachment of spindle microtubules to kinetochores. This enables chromosomes to move to the metaphase plate, to satisfy the spindle checkpoint and finally to segregate during anaphase. Recent studies on the function MAST in Drosophila and its human homologue CLASP1, have revealed...
interference (RNAi) in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study ...
One of the most intriguing aspects of mitosis is the ability of kinetochores to hold onto the plus-ends of dynamic microtubules that are actively gaining or losing tubulin subunits. Here we show that the microtubule-associated protein CLASP1 is localized preferentially near the plus-ends of growing microtubules during spindle formation and is also a component of a novel region that we term the outer kinetochore...
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing e...
We have performed a biochemical and double- stranded RNA-mediated interference (RNAi) analysis of the role of two chromosomal passenger proteins, inner centromere protein (INCENP) and aurora B kinase, in cultured cells of Drosophila melanogaster . INCENP and aurora B function is tightly interlinked. The two proteins bind to each other in vitro, and DmINCENP is required for DmAurora B to localize properly in mit...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |