Electrode surface characteristics represent an important aspect on the construction of sensitive DNA electrochemical biosensors for rapid detection of DNA interaction and damage. Two different immobilization procedures of double-stranded DNA (dsDNA) at the surface of a HOPG electrode were evaluated by MAC mode AFM performed in air. A thin dsDNA adsorbed film forming a network structure with holes exposing the e...
Single-stranded and double-stranded DNA electrochemical biosensors prepared by adsorption during 3 min on HOPG, with or without an applied potential, at pH 5.3 and 7.0, were characterised by MAC mode AFM. During adsorption DNA condenses on the substrate forming complex network films with pores exposing the HOPG surface. The thin films formed in pH 5.3 acetate buffer always presented a better coverage of the HOP...
Magnetic AC mode atomic force microscopy (MAC Mode AFM) was used to characterize the process of adsorption of DNA on a highly oriented pyrolytic graphite (HOPG) electrode surface using different concentrations of DNA and adsorption procedures. AFM of DNA immobilized on the HOPG showed that both single-stranded DNA and double-stranded DNA molecules have the tendency to spontaneously self-assemble from solution o...
Adriamycin adsorbs strongly and irreversibly onto surfaces and this enabled electrochemical detection of in situ adriamycin oxidative damage to DNA. The adsorption of adriamycin onto glassy carbon and highly oriented pyrolytic graphite (HOPG) electrodes was studied by voltammetry and mode atomic force microscopy (MAC). At a glassy carbon electrode (GCE), the adsorbate has similar voltammetric behaviour to adria...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |