Unlike fish, amphibia and even mammalial peripheral nerves, human central nervous system (CNS) axons have a very limited regeneration capability and do not spontaneously re-grow if lesioned. After damage or disruption, for instance caused by brain/ spinal cord injury (SCI) or stroke, a cascade of cellular and biochemical reactions occurs around the lesion site that creates a harsh environment for axons to regen...
Spinal cord injuries (SCI) still remain a major challenge in current biomedical research. In spite of several advances in the understanding of its mechanisms there has not been an equal significant translation into the clinics. As a result, there is no effective treatment that can overcome the biochemical and cellular adverse reactions that lead to a chronic severely impaired condition. One of the first opportu...
Central nervous system (CNS) disorders are among the diseases with less efficiency in treatment. In order to reach its target and exert its effect within the brain parenchyma, drugs must overcome the blood brain barrier (BBB) and the blood-cerebrospinal fluid-brain (BCSFB). The aim of this work was to develop a novel nano-based dendrimer which could serve as a nanocarrier with the ability to cross these barri- ...
The development of drug delivery systems (DDS) for targeted intracellular delivery of therapeutic agents has been attracting great deal of attention. In traumatic central nervous system conditions, where therapies have been revealing to be highly inneficient and non-specific, these targeted DDS could be highly beneficial. We have previously shown in vitro studies where the carboxymethylchitosan (CMCht)/ poly(am...
The efficiency of the treatments involving CNS disorders is commonly diminished by the toxicity, reduced stability and lack of targeting of the administered neuroactive compounds. In this study, we have successfully multifunctionalized CMCht/PAMAM dendrimer nanoparticles by coupling the CD11b antibody and loading MP into the nanoparticles. The modification of the new antibody-conjugated nanoparticles was confir...
Carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles (CMCht/PAMAM) have recently been proposed for intracellular drug delivery purposes. These are constituted by a PAMAM dendrimer core grafted with chains of CMCht. Previous reports have shown that these nanoparticles disclosed an improved cytotoxic profile when compared to traditional dendrimers. Following on these results the present study aims to as...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |