The neutron time-of-flight facility n_TOF at CERN, fully operational since 2002, combines a high instantaneous neutron flux with high energy resolution. The wide energy range and the high neutron flux per time-of-flight burst result in a much enhanced signal to background ratio for neutron capture of radioactive isotopes and makes this facility well suited for the measurement of high quality neutron-induced rea...
The [beta]-decay of 187Re represents a suited cosmo-chronometer for the age of the r-process abundances, since the radiogenic part of the daughter isotope 187Os is defined by the difference between the solar 187Os abundance and s-process contribution to 187Os. The latter component can be determined via the s-process systematics based on the stellar neutron capture cross sections of 186Os and 187Os. The laborato...
A series of neutron capture cross section measurements of interest to nuclear astrophysics have been recently performed at n_TOF, the neutron spallation source operating at CERN. The low repetition frequency of the proton beam driver, the extremely high instantaneous neutron flux, and the low background conditions in the experimental area are optimal for capture cross section measurements on low-mass or radioac...
A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei ...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |