Tese de mestrado, Estudos Clássicos, Universidade de Lisboa, Faculdade de Letras, 2014 ; Não sendo o mito uma realidade petrificada no tempo, a plasticidade que o caracteriza permite que ele seja reaproveitado para se defenderem ou criticarem novos valores. Com a presente dissertação pretendemos mostrar como, nomeadamente a partir da peça Kassandra de Hans Schwarz, assistimos a uma reconfiguração do mito de Ca...
Recreational Mathematics Colloquium III, Ponta Delgada, 3 a 6 de abril de 2013. ; Este resumo apresenta um novo jogo tridimensional que pode ser aplicado desde o 1.º ciclo do Ensino básico até outros níveis de ensino aplicando alguma variantes.
Recreational Mathematics Colloquium III, Ponta Delgada, 3 a 6 de abril de 2013. ; Este resumo apresenta o Concurso, a nível nacional, para alunos desde o 1. ciclo do ensino básico até ao ensino secundário em Portugal, de contos que envolvem conceitos matemáticos, trabalhando também a língua materna.
Wythoff queens is a classical combinatorial game related to very interesting mathematical results. An amazing one is the fact that the P-positions are given by $(\lfloor \phi n, \phi^2 n \rfloor)$ and $(\lfloor \phi^2 n, \phi n \rfloor)$ where $\phi = \frac{1 + \sqrt{5}}{2}$. In this paper, we analyze a different version where one player (Left) plays with a chess bishop and the other (Right) plays with a chess ...
We consider the dynamical system (A,T), where A is a class of differentiable functions defined on some interval and T:A→A is the operator Tφ:=foφ, where f is a differentiable m-modal map. For the particular case of f being a topologically exact map we study the growth rate of critical points of the iterated functions. Considering functions in A whose critical values are periodic points for f, we analyze the evo...
We consider the dynamical system (A,Tf), where A is a class of differentiable real functions defined on some interval and Tf:A→A is an operator Tf:=foφ, where f is a differentiable m-modal map. If we consider functions in A whose critical values are periodic points for f then, we show how to define and characterize a substitution system associated with (A,Tf). For these substitution systems, we compute the grow...
We consider the dynamical system (A,T), where A is a class of differentiable real functions defined on some interval and T:A→A is an operator Tφ:= foφ, where f is a function on the real line. In this work we introduce and develop some techniques of symbolic dynamics for the dynamical system (A,T). We analyze in detail the case in which T arises from a differentiable m-modal map f. In this case we obtain a combi...
Iteration of smooth maps appears naturally in the study of continuous difference equations and boundary value problems. Moreover, it is a subject that may be studied by its own interest, generalizing the iteration theory for interval maps. Our study is motivated by the works of A. N. Sharkovsky et al. [1,3], E. Yu. Romanenko et al. [2], S. Vinagre et al. [4] and R. Severino et al. [5]. We study families of disc...
It is known that solutions of certain classes of linear hyperbolic systems with nonlinear boundary conditions and consistent initial conditions can be written via the iteration of a map of the interval. In this work we characterize the solutions of such problems, with a vortex as initial condition and the iteration of a bimodal map of the interval, using the bimodal topological invariants.
We explore some analogy between unimodal tent maps of the interval and Lozi maps, defining the critical point and the kneading sequence of a Lozi map. Then, we show that the set of parameter plane curves corresponding to Lozi maps with some initial kneading sequence has a structure close to the tree of unimodal tent kneading sequences, introduced by Sousa Ramos.
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |