Encontrados 5 documentos, a visualizar página 1 de 1

Ordenado por Data

Cubic polynomials and optimal control on compact Lie groups

Abrunheiro, L.; Camarinha, M.; Clemente-Gallardo, J.

This paper analyzes the Riemannian cubic polynomials’s problem from a Hamiltonian point of view. The description of the problem on compact Lie groups is particulary explored. The state space of the second order optimal control problem considered is the tangent bundle of the Lie group which also has a group structure. The dynamics of the problem is described by a presymplectic formalism associated with the canon...


O Carvalho Negral

Carvalho, J; Santos, J; Reimão, D; Gallardo, J; Alves, P; Grosso-Silva, J; Santos, T; Pinto, A; Marques, G; Martins, L; Carvalheira, M; Santos, J

Os carvalhais autóctones são um património natural de muito valor. Desempenham importantes funções de conservação do solo e da água, da biodiversidade, da paisagem natural, e na melhoria do edafo-clima, para além de fornecerem importantes recursos lenhosos e não-lenhosos para diversos fins. Paralelamente com a conservação e protecção do ambiente e da natureza, contribuem para uma satisfação sócio-económica das ...

Data: 2005   |   Origem: Repositório da UTAD

Jacobi manifolds, Dirac structures and Nijenhuis operators

Clemente-Gallardo, J.; Costa, J. M. Nunes da

In a recent paper [2], we studied the concept of Dirac-Nijenhuis structures. We de ned them as deformations of the canonical Lie algebroid structure of a Dirac bundle D de ned in the double of a Lie bialgebroid (A;A¤) which satisfy certain properties. In this paper, we introduce the concept of generalized Dirac- Nijenhuis structures as the natural analogue when we replace the double of the Lie bialgebroid by th...


Dirac-Nijenhuis structures

Clemente-Gallardo, J.; Costa, J. M. Nunes da

We introduce the concept of Dirac-Nijenhuis structures as those manifolds carrying a Dirac structure and admitting a deformation by Nijenhuis operators which is compatible with it. This concept generalizes the notion of Poisson-Nijenhuis structure and can be adapted to include the Jacobi-Nijenhuis case.


Dirac structures for generalized Lie bialgebroids

Costa, M. Nunes da; Clemente-Gallardo, J.

We introduce the notion of Dirac structure for a generalized Courant algebroid. We show that the double of a generalized Lie bialgebroid is a generalized Courant algebroid. We present some examples and we obtain, as a particular case of our definition, the notion of E1(M)-Dirac structure introduced by Wade.


5 Resultados

Texto Pesquisado

Refinar resultados

Autor











Data





Tipo de Documento



Recurso



Assunto















    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia