It has been shown that hydrogel bilayered scaffolds combining cartilage- and bone-like layers are most advantageous for treating osteochondral defects. In this study, it is proposed the use of low acyl gellan gum (LAGG) for developing bilayered hydrogel scaffolds for osteochondral tissue engineering. The cartilage-like layer of the GG-based bilayered hydrogel scaffolds is composed of LAGG (2 wt%). By adding a 2...
Some approaches have been developed in our group to investigate the role of ionic liquids as process and property modifiers of natural-based polymers. In our previous work, we proposed the use of ionic liquids as plasticizing agents for the creation of porous structures from a semi-crystalline natural-based polymer. The current work intended to complement the previous studies, evaluating the ability of ionic li...
The phylum Echinodermata constitutes a successful and widespread group comprising Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea and Crinodeia. Nowadays, marine organisms are being given a lot of attention in drug discovery pipelines. In these studies, sponges and nudibranchs are frequently addressed, however an increasing number of works focus their attention in echinoderms. Given the fact that many of the...
In tissue engineering, the evaluation of the host response to the biomaterial implantation must be assessed to determine the extent of the inflammatory reaction. We studied the degradation of poly(butylene succinate) and chitosan in vitro using lipase and lysozyme enzymes, respectively. The subcutaneous implantation of the scaffolds was performed to assess tissue response. The type of inflammatory cells present...
Split-thickness autografts still are the current gold standard to treat skin, upon severe injuries. Nonetheless, autografts are dependent on donor site availability and often associated to poor quality neoskin. The generation of dermal–epidermal substitutes by tissue engineering is seen as a promising strategy to overcome this problematic. However, solutions that can be safely and conveniently transplanted in o...
In this study, bilayered silk and silk/nano-CaP scaffolds were developed for osteochondral (OC) tissue engineering. Aqueous silk solution (16 wt.%) was used for preparation of the cartilage-like layer and, for generation of the silk/nano-CaP suspension and the bottom layer (CaP/Silk: 16 wt.%). The scaffolds were formed by using salt-leaching/lyophilization approach. The scanning electron microscopy revealed tha...
Aim: The development of novel silk/nano-sized calcium phosphate (silk/nano-CaP) scaffolds with highly dispersed CaP nanoparticles in the silk fibroin (SF) matrix for bone tissue engineering. Materials & methods: Nano-CaP was incorporated in a concentrated aqueous SF solution (16 wt.%) by using an in situ synthesis method. The silk/nano-CaP scaffolds were then prepared through a combination of salt-leaching/ lyo...
In recent years, progress in the field of hybrid materials has been accelerated through use of the sol–gel process for creating materials and devices, which benefit from the incorporation of both inorganic and organic components. In this work, organic–inorganic hybrid membranes were prepared from tetraethoxysilane and a blend system composed of chitosan and soy protein. By introducing a small amount of siloxane...
In this study, we investigated the use of short sisal fibre with and without polyethylene-graft-maleic anhydride (PE-g-MA) as a strategy to reinforce cork–polymer composite (CPC) materials. The use of alkali treatment of sisal to improve fibre–matrix adhesion was evaluated. High density polyethylene (HDPE) was used as matrix and the composites were produced in a two-step process using twin-screw extruder follow...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |