Rhodosporidium toruloides NCYC 921 batch growth was monitored as a means to evaluate the yeastbiomass potential as a source for the production of carotenoids and other lipids.Carotenoid content, cell viability and size were assessed by multiparameter flow cytometry. Thesaponifiable lipid fraction was assayed by gas–liquid chromatography.The carotenoid production increased during the stationary phase, reaching 7...
This study demonstrates the simultaneous production of bioelectricity and added-value pigments in a Photosynthetic Alga Microbial Fuel Cell (PAMFC). A PAMFC was operated using Chlorella vulgaris in the cathode compartment and a bacterial consortium in the anode. The system was studied at two different light intensities and the maximum power produced was 62.7 mW/m2 with a light intensity of 96 lE/(m2 s). The re...
Some yeasts like Rhodosporidium toruloides are oleaginous and can be used for biodiesel production. In addition, some strains are able to produce valuable carotenoid pigments which are of great commercial interest, contributing significantly to reduce the biodiesel production costs. Carotenoid extraction and quantification are time consuming, generate high amounts of waste and require the use of considerable am...
Today microalgae represent a viable alternative source for high-value products. The specie Chlorella protothecoides (Cp), heterotrophically grown, has been widely studied and provides a high amount of lutein and fatty acids (FA) and has a good profile for biodiesel production. This work studies carotenoid and FA production by autotrophic grown Cp. Cp was grown until the medium’s nitrogen was depleted, then dilu...
The microalga Nannochloropsis sp. was used in this study, in a biorefinery context, as biomass feedstock for the production of fatty acids for biodiesel, biohydrogen and high added-value compounds. The microalgal biomass, which has a high lipid and pigment content (mainly carotenoids), was submitted to supercritical CO2 extraction. The temperature, pressure and solvent flow-rate were evaluated to check their ef...
Biofuel production from microalgal biomass could be an alternative solution to conventional biofuels typically dependent on food and high land/water demanding crops. However, the economic and energetic viability of microalgal biofuels is limited by their harvesting processes. The finding of innovative, low cost and efficient harvesting method(s) is imperative. In this study, the Electro-Coagulation (EC) was stu...
Are microalgae a potential energy source for biofuel production? This paper presents the laboratory results from a Nannochloropsis sp. microalga biorefinery for the production of oil, high-value pigments, and biohydrogen (bioH2). The energy consumption and CO2 emissions involved in the whole process (microalgae cultivation, harvest, dewater, mill, extraction and leftover biomass fermentation) were evaluated. An...
The use microalgae biomass for the production of biofuels has received great attention in the last decades. Microalgae biofuels could be important alternative to conventional biofuels since microalgae could be produced at high rates without the need of neither arable land, potable water or competition with food. However, the high energy intensive harvesting processes are limiting the commercial production of mi...
Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other su...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |