Detalhes do Documento

Integrated aquaculture of Bonnemaisoniaceae: physiological and nutritional cont...

Autor(es): Mata, Leonardo Filipe Rodrigues da cv logo 1

Data: 2008

Identificador Persistente: http://hdl.handle.net/10400.1/1707

Origem: Sapientia - Universidade do Algarve

Assunto(s): Aquacultura; Algas; Biofiltros; Asparagopsis


Descrição
Tese de dout., Ciências do Mar, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2008 The use of seaweed as biofilters of animal mariculture discharges has not been widely adopted by the aquaculture industry. Research efforts should focus on the cultivation of novel seaweed species with economic value so that nutrient biofiltration may be identified by the aquaculture industry as a self sustainable, environmental friendly technology that produces profitable biomass. The Asparagopsis spp. volatile halogenated compounds (VHCs) are explored for cosmetics formulations and so the integrated aquaculture of Asparagopsis species should be considered as an opportunity. In this thesis I aim to establish the tank domestication of the tetrasporophyte phase of Asparagopsis species (A. armata and A. taxiformis) and compare its nutrient biofiltration and biomass production performance with the most successful seaweed biofilters, Ulva spp. By exploiting the physiological responses of the species to different levels of the manageable resources in culture (light, nitrogen and carbon) I aim to determine the cultivation conditions that maximize the TAN removal from the effluents, the biomass production of the system and the internal levels of VHCs. The performances of Asparagopsis species in integrated aquaculture exceeded that of the Ulva spp. In this integrated cultivation system, the optimal Asparagopsis spp. stocking density (light) was 5 g fresh weight L-1 and the ideal supply rates of fish effluents to the seaweed tanks was ~3 vol h-1. These conditions provided the the quantity of nutrients, but especially CO2 to maximize the nutrients biofiltration, the biomass yield and the bromoform (the major VHC in these species) internal levels. At CO2 limiting conditions for photosynthesis non–structural carbohydrate pools are affected, decreasing both growth and the production of carbon based secondary compounds. The continuously year round cultivation of both Asparagopsis species in this system was not possible, because the tank water temperature surpassed 27 and 29 ºC, lethal for the cultivation of A. armata and A. taxiformis, respectively.
Tipo de Documento Tese de Doutoramento
Idioma Inglês
Orientador(es) Santos, Rui
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia