Autor(es):
Cabral, Izunildo Fernandes
Data: 2011
Identificador Persistente: http://hdl.handle.net/10362/6620
Origem: Repositório Institucional da UNL
Assunto(s): Lean; Agile; Resilient; Green; Supply chain management; Information model
Descrição
Dissertação para a obtenção de Grau de Mestre em Engenharia e Gestão Industrial In modern business environments, an effective Supply Chain Management (SCM) is crucial to business continuity. In this context, Lean, Agile, Resilient and Green (LARG), are advocated as the fundamental paradigm for a competitive Supply Chain (SC) as a whole. In fact, competition between supply chains (SC) has replaced the traditional competition between companies. To make a supply chain more competitive, capable of responding to the demands of customers with agility, and capable of responding effectively to unexpected disturbance, in conjugation with environmental responsibilities, and the necessity to eliminate processes that add no value, companies must implement a set of LARG SCM practices and Key Performance Indicators (KPI) to measure their influence on the SC performance. However, the selection of the best LARG SCM practices and KPIs is a complex decision-making problem, involving dependencies and feedbacks. Still, any decision-making must be supported by real and transparent data. This dissertation intends to provide two integrated models to assist the information management and decision-making. The first is an information model to support a LARG SCM, allowing the exchange and storage of data/information through a single information platform. In this model three types of diagrams are developed, Business Process Diagram (BPD), Use Cases Diagram and Class Diagram to assist the information platform design. The second is a decision-making model, designated LARG Analytical Network Process (ANP) to select the best LARG SCM practices/KPI to be implemented in SCs. Both models are developed and validated within the automotive SC, namely in Volkswagen Autoeuropa.