Document details

On minimality of convolutional ring encoders

Author(s): Kuijper, M. cv logo 1 ; Pinto, R. cv logo 2

Date: 2009

Persistent ID: http://hdl.handle.net/10773/6355

Origin: RIA - Repositório Institucional da Universidade de Aveiro

Subject(s): Convolutional codes over rings; Minimal polynomial encoder; Minimal trellis


Description
Convolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU