Document details

On the Hausdorff Dimension of Continuous Functions Belonging to Hölder and Beso...

Author(s): Carvalho, A. cv logo 1 ; Caetano, A. cv logo 2

Date: 2011

Persistent ID: http://hdl.handle.net/10773/5559

Origin: RIA - Repositório Institucional da Universidade de Aveiro

Subject(s): Besov spaces; Box counting dimension; Continuous functions; d-Sets; Fractals; Hausdorff dimension; Hölder spaces; Wavelets; Weierstrass function


Description
The Hausdorff dimension of the graphs of the functions in Hölder and Besov spaces (in this case with integrability p≥1) on fractal d-sets is studied. Denoting by s in (0,1] the smoothness parameter, the sharp upper bound min{d+1-s, d/s} is obtained. In particular, when passing from d≥s to d<s there is a change of behaviour from d+1-s to d/s which implies that even highly nonsmooth functions defined on cubes in ℝn have not so rough graphs when restricted to, say, rarefied fractals. © 2011 Springer Science+Business Media, LLC.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU