Detalhes do Documento

Integrabilidade e dispersão de sistemas hamiltonianos

Autor(es): Pereira, Susana Raquel da Silva Leal cv logo 1

Data: 2005

Identificador Persistente: http://hdl.handle.net/10773/4958

Origem: RIA - Repositório Institucional da Universidade de Aveiro

Assunto(s): Análise matemática; Mecânica - Modelos matemáticos; Sistemas hamiltonianos; Integrais


Descrição
Neste trabalho apresentam-se os conceitos e princípios básicos da Mecânica Clássica e os principais modelos para descrever o movimento de corpos. Assim, apresentam-se os modelos da Mecânica Newtoniana e da Mecânica Hamiltoniana, e deduzem-se as equações que, em cada modelo, descrevem o movimento. Posteriormente, aborda-se a problemática da resolução destas equações e, em particular, da integrabilidade das equações de Hamilton. Neste contexto, é enunciado e demonstrado o Teorema de Liouville sobre Sistemas Integráveis. Como exemplo de um sistema integrável, discute-se o problema da dispersão de um sistema de partículas numa recta. Mostra-se que, sob determinadas condições, é possível caracterizar o movimento deste sistema conhecendo apenas o seu potencial, e vice-versa. Finalmente, é estudado este mesmo exemplo pelo Método de Integração por Deformação Isospectral, desenvolvido por P. D. Lax e analisada a conjectura de Marchioro sobre o seu comportamento assimptótico. This work presents basic concepts and laws of Classical Mechanics and the most important models used to describe the motion. Therefore, we introduce Newtonian Mechanics and Hamiltonian Mechanics, and deduce the equations that, in each case, describe the motion. Next, we approach the problem of solving these equations and, in particular, the integrability of Hamiltonian equations. In this context, we enunciate and prove Liouville’s Theorem on Integrable Systems. As an example of an integrable system, we discuss the scattering problem for some particle system on the line. We show that, under certain conditions, we can describe its motion knowing only the potencial, and vice versa. Finally, we study this same example using Isospectral Deformations, an integration method developed by P. D. Lax and we analyse Marchioro´s conjecture on its asymptotic behaviour. Mestrado em Matemática - Análise e Geometria
Tipo de Documento Dissertação de Mestrado
Idioma Português
Orientador(es) Plakhov, Alexander
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia