Document details

Graphs with least eigenvalue -2 attaining a convex quadratic upper bound for th...

Author(s): Cardoso, Domingos M. cv logo 1 ; Cvetkovic, D. cv logo 2

Date: 2006

Persistent ID: http://hdl.handle.net/10773/4441

Origin: RIA - Repositório Institucional da Universidade de Aveiro

Subject(s): Graph theory; Graph spectra; Line graph; Quadratic programming; Stability number


Description
In this paper we study the conditions under which the stability number of line graphs, generalized line graphs and exceptional graphs attains a convex quadratic programming upper bound. In regular graphs this bound is reduced to the well known Hoffman bound. Some vertex subsets inducing subgraphs with regularity properties are analyzed. Based on an observation concerning the Hoffman bound a new construction of regular exceptional graphs is provided. CEOC FCT FEDER
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU