Document details

Resistance to Broad-Spectrum Antibiotics in Aquatic Systems: Anthropogenic Acti...

Author(s): Tacão, Marta cv logo 1 ; Correia, António cv logo 2 ; Henriques, Isabel cv logo 3

Date: 2012

Persistent ID: http://hdl.handle.net/10773/11067

Origin: RIA - Repositório Institucional da Universidade de Aveiro


Description
We compared the resistomes within polluted and unpolluted rivers, focusing on extended-spectrum beta-lactamase (ESBL) genes, in particular blaCTX-M. Twelve rivers from a Portuguese hydrographic basin were sampled. Physicochemical and microbiological parameters of water quality were determined, and the results showed that 9 rivers were classified as unpolluted (UP) and that 3 were classified as polluted (P). Of the 225 cefotaxime-resistant strains isolated, 39 were identified as ESBL-producing strains, with 18 carrying a blaCTX-M gene (15 from P and 3 from UP rivers). Analysis of CTX-M nucleotide sequences showed that 17 isolates produced CTX-M from group 1 (CTX-M-1, -3, -15, and -32) and 1 CTX-M that belonged to group 9 (CTX-M-14). A genetic environment study revealed the presence of different genetic elements previously described for clinical strains. ISEcp1 was found in the upstream regions of all isolates examined. Culture-independent blaCTX-M-like libraries were comprised of 16 CTX-M gene variants, with 14 types in the P library and 4 types in UP library, varying from 68% to 99% similarity between them. Besides the much lower level of diversity among CTX-M-like genes from UP sites, the majority were similar to chromosomal ESBLs such as blaRAHN-1. The results demonstrate that the occurrence and diversity of blaCTX-M genes are clearly different between polluted and unpolluted lotic ecosystems; these findings favor the hypothesis that natural environments are reservoirs of resistant bacteria and resistance genes, where anthropogenic-driven selective pressures may be contributing to the persistence and dissemination of genes usually relevant in clinical environments.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU