Document details

Modelling lubricated revolute joints in multibody mechanical systems

Author(s): Flores, Paulo cv logo 1 ; Lankarani, H. M. cv logo 2 ; Ambrósio, Jorge cv logo 3 ; Claro, José Carlos Pimenta cv logo 4

Date: 2004

Persistent ID: http://hdl.handle.net/1822/8937

Origin: RepositóriUM - Universidade do Minho

Subject(s): Lubricated joints; Dynamic journal–bearings; Multibody mechanical systems


Description
This work deals with the modelling of lubricated revolute joints in multibody mechanical systems. In most machines and mechanisms, the joints are designed to operate with some lubricant fluid. The high pressures generated in the lubricant fluid act to keep the journal and the bearing apart. Moreover, the thin film formed by lubricant reduces friction and wear, provides load capacity and adds damping to dissipate undesirable mechanical vibrations. In the dynamic analysis of journal–bearings, the hydrodynamic forces, which include both squeeze and wedge effects, produced by the lubricant fluid oppose the journal motion. These forces are obtained by integrating the pressure distribution evaluated with the aid of Reynolds’ equation written for the dynamic regime. The hydrodynamic forces are nonlinear functions of journal centre position and velocity relative to the bearing centre. In a simple way, the hydrodynamic forces built up by the lubricant fluid are evaluated from the state of variable of the system and included into the equations of motion of the mechanical system. Results for an elementary slider–crank mechanism, in which a lubricated revolute joint connects the connecting rod and slider, are used to discuss the assumptions and procedures adopted.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU