Document details

Measurement of gas phase characteristics using amonofibre optical probe in a th...

Author(s): Mena, P. C. cv logo 1 ; Rocha, F. A. cv logo 2 ; Teixeira, J. A. cv logo 3 ; Sechet, P. cv logo 4 ; Cartellier, C. cv logo 5

Date: 2008

Persistent ID: http://hdl.handle.net/1822/8159

Origin: RepositóriUM - Universidade do Minho

Subject(s): Bubble column; Solids; Optical probe; Gas holdup; Bubble rise velocity


Description
The study of gas–liquid–solid systems structure requires reliable measurement tools. In this paper, preliminary results on the potential use of a monofibre optical probe to investigate such flow are presented. This probe, manufactured at LEGI, allows the simultaneous measurement of the gas phase residence time and gas phase velocity. This specificity makes this probe more interesting than classical single tip probes (which measure only the gas residence time) or double tip probes (which are more intrusive). Although extensively used in two-phase gas–liquid, this probe was never used in gas–liquid–solid systems. First, the probe signal response is studied for three-phase flow conditions in the presence of solids. Results show that for soft solids, the probe tips can be contaminated when the probe pierces the solid. The signal processing procedure was modified accordingly to take into account these events. Second, the probe results are validated by comparing global results (global void fraction, gas flowrate) deduced from profile measurements with measurements performed by independent means. Lastly, void fraction profiles and interfacial area are studied more in detail. Depending on the solid loading, these profiles exhibit different behaviours. These features are associated to characteristics of the flow such as the transition from an homogeneous regime to an heterogenous regime, and are consistent with global observation performed by independent means. This demonstrates the ability of the probe to connect local information to the global behaviour and structure of the flow.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU