Document details

A machine learning approach to keystroke dynamics based user authentication

Author(s): Revett, Kenneth cv logo 1 ; Gorunescu, Florin cv logo 2 ; Gorunescu, Marina cv logo 3 ; Ene, Marius cv logo 4 ; Magalhães, Paulo Sérgio cv logo 5 ; Santos, Henrique Dinis dos cv logo 6

Date: 2007

Persistent ID: http://hdl.handle.net/1822/6388

Origin: RepositóriUM - Universidade do Minho

Subject(s): Biometrics; Equal error rate; Keystroke dynamics; Probabilistic neural networks


Description
The majority of computer systems employ a login ID and password as the principal method for access security. In stand-alone situations, this level of security may be adequate, but when computers are connected to the internet, the vulnerability to a security breach is increased. In order to reduce vulnerability to attack, biometric solutions have been employed. In this paper, we investigate the use of a behavioural biometric based on keystroke dynamics. Although there are several implementations of keystroke dynamics available - their effectiveness is variable and dependent on the data sample and its acquisition methodology. The results from this study indicate that the Equal Error Rate (EER) is significantly influenced by the attribute selection process and to a lesser extent on the authentication algorithm employed. Our results also provide evidence that a Probabilistic Neural Network (PNN) can be superior in terms of reduced training time and classification accuracy when compared with a typical MLFN back-propagation trained neural network.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU