Document details

3D-Mappings using monogenic functions

Author(s): Malonek, H. R. cv logo 1 ; Falcão, M. I. cv logo 2

Date: 2006

Persistent ID: http://hdl.handle.net/1822/6003

Origin: RepositóriUM - Universidade do Minho

Subject(s): Clifford analysis; Monogenic functions; 3D-mappings


Description
Conformal mappings of plane domains are realized by holomorphic functions with non vanishing derivative. Therefore complex differentiability plays an important role in all questions related to fundamental properties of such mapping. In contrast to the planar case, in higher dimensions the set of conformal mappings consists only of M¨obius transformations. But unfortunately M¨obius transformations are not monogenic functions and therefore also not hypercomplex differentiable. However the equivalence between both concepts - hypercomplex differentiability in the sense of [9], [11] and monogenicity - suggests the question whether monogenic functions can play or not a special role for other types of 3D-mappings, for instance, for quasi-conformal ones. Our goal is to present a case study of an approach to 3D-mappings by using particularly easy to handle monogenic homogeneous polynomials as basis for approximating the mapping function. Thereby we extend significantly the results obtained in [3]. From the numerical point of view we apply ideas from complex numerical analysis realizing the approximation via polynomials of a small real parameter.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU