Document details

Electron-phonon interaction effects in semiconductor quantum dots: a non-pertur...

Author(s): Vasilevskiy, Mikhail cv logo 1 ; Anda, Enrique cv logo 2 ; Makler, Sergio cv logo 3

Date: 2004

Persistent ID: http://hdl.handle.net/1822/5477

Origin: RepositóriUM - Universidade do Minho

Subject(s): Quantum dot; Electron-phonon interaction; Polaron; Opical absorption and emission


Description
Multiphonon processes in a model quantum dot (QD) containing two electronic states and several optical phonon modes are considered by taking into account both intra- and nterlevel terms. The Hamiltonian is exactly diagonalized, including a finite number of multiphonon processes large enough to guarantee that the result can be considered exact in the physically important energy region. The physical properties are studied by calculating the electronic Green’s function and the QD dielectric function. When both the intra- and interlevel interactions are included, the calculated spectra allow several previously published experimental results obtained for spherical and self-assembled QD’s, such as enhanced two-LO-phonon replica in absorption spectra and up-converted photoluminescence to be explained. An explicit calculation of the spectral line shape due to intralevel interaction with a continuum of acoustic phonons is presented, where the multiphonon processes also are shown to be important. It is pointed out that such an interaction, under certain conditions, can lead to relaxation in the otherwise stationary polaron system.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU