Detalhes do Documento

On numerical aspects of pseudo-complex powers in R^3

Autor(es): Cruz, Carla cv logo 1 ; Falcão, M. I. cv logo 2 ; Malonek, H. R. cv logo 3

Data: 2014

Identificador Persistente: http://hdl.handle.net/1822/29696

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Pseudo-complex powers; Monogenic polynomials; Vandermonde matrix


Descrição
In this paper we consider a particularly important case of 3D monogenic polynomials that are isomorphic to the integer powers of one complex variable (called pseudo-complex powers or pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been discussed by several authors and from different points of view. Here our main concern are numerical aspects of the implementation of PCP as bases of monogenic polynomials of homogeneous degree k. The representation of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed analysis for showing the numerical effciency of the use of PCP. In this context a modiffcation of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia