Document details

Convergence of convex sets with gradient constraint

Author(s): Azevedo, Assis cv logo 1 ; Santos, Lisa cv logo 2

Date: 2004

Persistent ID: http://hdl.handle.net/1822/2899

Origin: RepositóriUM - Universidade do Minho

Subject(s): Mosco convergence; Quasivariational inequality


Description
Given a bounded open subset of R^N, we study the convergence of a sequence (K_n)_{n\in\N} of closed convex subsets of W_0^{1,p}(\Omega) (p\in]1,\infty[) with gradient constraint, to a convex set K, in the Mosco sense. A particular case of the problem studied is when K_n={v\in W_0^{1,p}(\Omega):: F_n(x,\nabla v(x))<= g_n(x) for a.e. x in \Omega}. Some examples of non-convergence are presented. We also present an improvement of a result of existence of a solution of a quasivariational inequality, as an application of this Mosco convergence result.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU