Detalhes do Documento

Convergence of convex sets with gradient constraint

Autor(es): Azevedo, Assis cv logo 1 ; Santos, Lisa cv logo 2

Data: 2004

Identificador Persistente: http://hdl.handle.net/1822/2899

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Mosco convergence; Quasivariational inequality


Descrição
Given a bounded open subset of R^N, we study the convergence of a sequence (K_n)_{n\in\N} of closed convex subsets of W_0^{1,p}(\Omega) (p\in]1,\infty[) with gradient constraint, to a convex set K, in the Mosco sense. A particular case of the problem studied is when K_n={v\in W_0^{1,p}(\Omega):: F_n(x,\nabla v(x))<= g_n(x) for a.e. x in \Omega}. Some examples of non-convergence are presented. We also present an improvement of a result of existence of a solution of a quasivariational inequality, as an application of this Mosco convergence result.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia