Detalhes do Documento

A parabolic quasi-variational inequality arising in a superconductivity model

Autor(es): Rodrigues, José Francisco cv logo 1 ; Santos, Lisa cv logo 2

Data: 2000

Identificador Persistente: http://hdl.handle.net/1822/2898

Origem: RepositóriUM - Universidade do Minho


Descrição
35K85 (primary), 35K55, 35R35 (secondary) We consider the existence of solutions for a parabolic quasilinear problem with a gradient constraint which threshold depends on the solution itself. The problem may be considered as a quasi-variational inequality and the existence of solution is shown by considering a suitable family of approximating quasilinear equations of p-Laplacian type. A priori estimates on the time derivative of the approximating solutions and on the nonlinear diffusion coefficients are used in the passage to the limit, as well as a suitable sequence of convex sets with variable gradient constraint. The asymptotic behaviour as t → ∞ is also considered, and the solutions of the quasi-variational inequality are shown to converge, at least for subsequences, to a solution of a stationary quasi-variational inequality. These results can be applied to the critical-state model of type-II superconductors in longitudinal geometry.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia