Document details

Generalized invertibility in two semigroups of a ring

Author(s): Patrício, Pedro cv logo 1 ; Puystjens, Roland cv logo 2

Date: 2004

Persistent ID: http://hdl.handle.net/1822/2888

Origin: RepositóriUM - Universidade do Minho

Subject(s): Generalized invertibility; Corner rings; Matrices over rings; Semigroups


Description
In {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU