Detalhes do Documento

The N-matrix completion problem under digraphs assumptions

Autor(es): Araújo, C. Mendes cv logo 1 ; Torregrosa, Juan R. cv logo 2 ; Urbano, Ana M. cv logo 3

Data: 2004

Identificador Persistente: http://hdl.handle.net/1822/2870

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Partial matrix; Matrix completion problems; N-matrix; Digraph


Descrição
An $n \times n$ matrix is called an $N$--matrix if all principal minors are negative. In this paper, we are interested in the partial $N$--matrix completion problem, when the partial $N$--matrix is non-combinatorially symmetric. In general, this type of partial matrices does not have an $N$--matrix completion. We prove that a non-combinatorially symmetric partial $N$--matrix has an $N$--matrix completion if the graph of its specified entries is an acyclic graph or a cycle. We also prove that there exists the desired completion for partial $N$--matrices such that in its associated graphs the cycles play an important role.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia