Detalhes do Documento

Closures of regular languages for profinite topologies

Autor(es): Almeida, Jorge cv logo 1 ; Costa, José Carlos Cruz da cv logo 2 ; Zeitoun, Marc cv logo 3

Data: 2014

Identificador Persistente: http://hdl.handle.net/1822/27493

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Pseudovariety; Profinite semigroup; Profinite topology; Pointlike set; Regular language; Aperiodic semigroup; Topological closure


Descrição
The Pin-Reutenauer algorithm gives a method, that can be viewed as a descriptive procedure, to compute the closure in the free group of a regular language with respect to the Hall topology. A similar descriptive procedure is shown to hold for the pseudovariety A of aperiodic semigroups, where the closure is taken in the free aperiodic omega-semigroup. It is inherited by a subpseudovariety of a given pseudovariety if both of them enjoy the property of being full. The pseudovariety A, as well as some of its subpseudovarieties are shown to be full. The interest in such descriptions stems from the fact that, for each of the main pseudovarieties V in our examples, the closures of two regular languages are disjoint if and only if the languages can be separated by a language whose syntactic semigroup lies in V. In the cases of A and of the pseudovariety DA of semigroups in which all regular elements are idempotents, this is a new result.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia