Detalhes do Documento

Multiscale modeling of composite structure-property relations : application to ...

Autor(es): Pyrlin, Sergey V. cv logo 1 ; Ramos, Marta M. D. cv logo 2

Data: 2013

Identificador Persistente: http://hdl.handle.net/1822/26871

Origem: RepositóriUM - Universidade do Minho


Descrição
Apresentação efetuada no European Congress and Exhibition on Advanced Materials and Processes - EuroMat 2013, em Sevilha, Espanha, 2013 Development of functional composite materials by addition of inorganic inclusions to polymer matrix attracts growing attention in last decades. However such material characteristics depend not only on the concentration and properties of nanoinclusions but also on their distribution inside embedding polymer, which complicates prediction and optimization of composite properties. Carbon nanotubes (CNT) attract particular interest as reinforcement material due to their unique properties tunable by doping and functionalization. Different properties of carbon nanotubes were successfully studied in silico in numerous papers by atomistic calculations. However computational chemistry is limited to systems containing hundreds to several thousands of atoms so only fragments of polymer chains and nanotubes are accessible. Meanwhile optical microscopy analysis shows that industrial-scale CNT-polymer composites contain distribution irregularities and agglomerates of CNTs up to ~10 micron size [1]. Charge transport in such composites mostly explained by electron tunneling between conductive inclusions, probability of which depends on nanotube's electronic structure as well as on tunneling distance and local electric field in the contact region, affected by the presence of other conducting inclusions. To facilitate the investigation of CNT-polymer composites' electric properties a two-level modeling procedure is suggested: first, local density of states (LDOS) around CNT's Fermi level is evaluated from ab initial calculations including the effect of doping and functionalization, than a Monte Carlo simulation of charge transport between CNTs is carried out where the tunneling probability is estimated using previously calculated LDOS and simplified representation of electronic wave functions in the inter-CNT space as spherical or cylindrical waves. The suggested procedure, although very simplistic, allows charge transport studies on a length scales of ~100 um compared to the scale of CNTs' distribution irregularities in composites and direct comparison with experimental data.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia