Detalhes do Documento

An artificial fish swarm algorithm based hyperbolic augmented Lagrangian method

Autor(es): Costa, M. Fernanda P. cv logo 1 ; Rocha, Ana Maria A. C. cv logo 2 ; Fernandes, Edite Manuela da G. P. cv logo 3

Data: 2013

Identificador Persistente: http://hdl.handle.net/1822/26658

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Augmented Lagrangian; Hyperbolic penalty; Artificial fish swarm; Stochastic convergence


Descrição
Documento submetido para revisão pelo pares a publicar em Journal of computational and applied mathematics. ISSN 0377-0427. Versão "In Press, Corrected Proof" disponível em http://www.sciencedirect.com/science/article/pii/S0377042713004226 This paper aims to present a hyperbolic augmented Lagrangian (HAL) framework with guaranteed convergence to an ϵ-global minimizer of a constrained nonlinear optimization problem. The bound constrained subproblems that emerge at each iteration k of the framework are solved by an improved artificial fish swarm algorithm. Convergence to an ϵk-global minimizer of the HAL function is guaranteed with probability one, where ϵk→ϵ as k→∞. Preliminary numerical experiments show that the proposed paradigm compares favorably with other penalty-type methods.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia